
Deep Learning for Data Science
DS 542

Lecture 10
Convolutional Networks

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Challenges Processing Images, Audio, Text, Video…

● Much bigger inputs?
● Variable size inputs?
● But some obvious structure to leverage?

Bigger Inputs

Original image size:

2560x1707x3=

13,109,760 values

Original image: kpmb.com

Variable Size

Original size: 3024x4032x3=

36,578,304 values

Vs previous 2560x1707x3

(not even same ratio)

 Structure

 ←Original

 3024x4032x3

 Shrunk ⅛ →

 378x504x3

Data augmentation (from last time)

6

Convolutional networks

Our first useful approach to these problems with large but structured inputs.

● Much bigger inputs? ✅
● Variable size inputs? ❌ but often can rescale as workaround
● But some obvious structure to leverage? ✅

Spoiler: recognizing structure helps learn with bigger inputs.

Convolutional networks
● Networks for images
● Invariance and equivariance
● 1D convolution
● Convolutional layers
● Channels
● Receptive fields
● Convolutional network for MNIST 1D

• Multiclass classification problem (discrete classes, >2 possible classes)
• Convolutional network

Image classification

Object detection

• Multivariate binary classification problem (many outputs, two discrete classes)
• Convolutional encoder-decoder network

Image segmentation

Networks for images
Problems with fully-connected networks

1. Size
○ 224x224 RGB image = 150,528 dimensions
○ Hidden layers generally larger than inputs
○ One hidden layer = 150,520x150,528 weights -- 22 billion

2. Nearby pixels statistically related
○ But could permute pixels and relearn and get same results with FC

3. Should be stable under transformations
○ Don’t want to re-learn appearance at different parts of image

Networks for images
Problems with fully-connected networks

1. Size
○ 224x224 RGB image = 150,528 dimensions
○ Hidden layers generally larger than inputs
○ One hidden layer = 150,520x150,528 weights -- 22 billion

2. Nearby pixels statistically related
○ But could permute pixels and relearn and get same results with FC

3. Should be stable under transformations
○ Don’t want to re-learn appearance at different parts of image

Opportunities for
regularization?

Convolutional networks

● Parameters only look at local image patches

● Share parameters across image

Convolutional networks
● Networks for images
● Invariance and equivariance
● 1D convolution
● Convolutional layers
● Channels
● Receptive fields
● Convolutional network for MNIST 1D

Invariance
A function f[x] is invariant to a transformation t[] if:

i.e., the function output is the same even after the transformation is applied.

Invariance example
e.g., Image classification
● Image has been translated, but we want our classifier

to give the same result

Equivariance
● A function f[x] is equivariant to a transformation t[] if:

i.e., the output is transformed in the same way as the input

Equivariance example

e.g., Image segmentation

• Image has been translated and we want segmentation to translate with it

19

Convolutional networks
● Networks for images
● Invariance and equivariance
● 1D convolution
● Convolutional layers
● Channels
● Receptive fields
● Convolutional network for MNIST 1D

• Input vector x:

• Output is weighted sum of neighbors:

• Convolutional kernel or filter:

Convolution* in 1D

Kernel size =
3

* Not really technically
convolution

Convolution with kernel size 3

Convolution with kernel size 3

Convolution with kernel size 3

Equivariant to translation of
input

Zero padding

Treat positions that are beyond end of the input as zero.

“Valid” convolutions

Only process positions where kernel falls in image (smaller output).

Stride, kernel size, and dilation
● Stride = shift by k positions for each output

○ Decreases size of output relative to input
● Kernel size = weight a different number of inputs for each output

○ Combine information from a larger area
○ But kernel size 5 uses 5 parameters

● Dilated or atrous convolutions = intersperse kernel values with zeros
○ Combine information from a larger area
○ Fewer parameters

1

1 1

1 1 1

1 1 1 2

Convolutional networks
● Networks for images
● Invariance and equivariance
● 1D convolution
● Convolutional layers
● Channels
● Receptive fields
● Convolutional network for MNIST 1D

Convolutional layer

Special case of fully-connected network

Fully connected
network:

Convolutional
network:

Special case of fully-connected network

Fully connected
network:

Convolutional
network:

3 weights, 1
bias

Special case of fully-connected network

Fully connected
network

Weight
Matrix

Bias is
implied

Special case of fully-connected network

Fully connected
network

Convolution, kernel 3,
stride 1, dilation 1

Weight
Matrices

Bias is
implied

Special case of fully-connected network

Fully connected
network

Convolution, size 3, stride 1,
dilation 1, zero padding

Convolution, size 3, stride 2,
dilation 1, zero padding

Weight
Matrices

Bias is
implied

Question 1

• Kernel size?
• Stride?
• Dilation?
• Zero padding / valid?

Bias is
implied

Question 2

• Kernel size?
• Stride?
• Dilation?
• Zero padding / valid?

Bias is
implied

Question 3

• Kernel size?
• Stride?
• Dilation?
• Zero padding / valid?

Bias is
implied

Convolutional networks
● Networks for images
● Invariance and equivariance
● 1D convolution
● Convolutional layers
● Channels
● Receptive fields
● Convolutional network for MNIST 1D

Channels
● The convolutional operation averages together the inputs
● Plus passes through ReLU function
● Result is loss of information
● Solution:

○ apply several convolutions and stack them in channels
○ Sometimes also called feature maps
○ Similar motivations to having multiple units in a hidden layer

43

Two output channels, one input channel

Two output channels, one input channel

Two input channels, one output channel

How many parameters?

Convolutional networks
● Networks for images
● Invariance and equivariance
● 1D convolution
● Convolutional layers
● Channels
● Receptive fields
● Convolutional network for MNIST 1D

Receptive fields

Receptive fields

Receptive fields

Receptive fields

52

Convolutional networks
● Networks for images
● Invariance and equivariance
● 1D convolution
● Convolutional layers
● Channels
● Receptive fields
● Convolutional network for MNIST 1D

MNIST 1D Dataset

MNIST-1D results for fully-connected
network

Fully connected network
● Exactly same number of layers and hidden units
● All fully-connected layers
● Total parameters = 150,185

Convolutional network
● Four hidden layers
● Three convolutional layers
● One fully-connected layer
● Softmax at end
● Total parameters = 2050
● Trained for 100,000 steps with SGD,

LR = 0.01, batch size 100

MNIST-1D convolutional network

Performance

Why?
● Better inductive bias
● Forced the network to process each location similarly
● Shares information across locations
● Search through a smaller family of input/output mappings, all of which are

plausible

2D Convolution

Convolution #2
● 2D Convolution
● Downsampling and upsampling, 1x1 convolution
● Image classification
● Object detection
● Semantic segmentation
● Residual networks
● U-Nets and hourglass networks

2D Convolution
● Convolution in 2D

○ Weighted sum over a K x K region
○ K x K weights

● Build into a convolutional layer by adding bias and passing through activation
function

2D Convolution

64

2D Convolution with Zero Padding

65

Channels in 2D convolution

Kernel size, stride, dilation all
work as you would expect

66

How many parameters?

Convolution #2
● 2D Convolution
● Downsampling and upsampling, 1x1 convolution
● Image classification
● Object detection
● Semantic segmentation
● Residual networks
● U-Nets and hourglass networks

Downsampling

Sample every other
position (equivalent to

stride two)

Downsampling

Sample every other
position (equivalent to

stride two)

Max pooling
(partial invariance to

translation)

Downsampling

Sample every other
position (equivalent to

stride two)

Max pooling
(partial invariance to

translation)

Mean pooling

Upsampling

Duplicate

Upsampling

Duplicate Max-upsampling

Upsampling

Duplicate Max-upsampling Bilinear interpolation

Transposed convolutions

Kernel size 3, Stride 2
convolution

Transposed convolutions

Kernel size 3, Stride 2
convolution

Transposed
convolution

1x1 convolution

• Mixes channels
• Can change number of channels
• Equivalent to running same fully connected network at each position

Convolution #2
● 2D Convolution
● Downsampling and upsampling, 1x1 convolution
● Image classification
● Object detection
● Semantic segmentation
● Residual networks
● U-Nets and hourglass networks

ImageNet database

● 224 x 224 images

● 1,281,167 training images, 50,000 validation images, and 100,000 test images

● 1000 classes

79

AlexNet (2012)

Almost all the 60
million parameters
 parameters are in fully
connected layers

Data augmentation

• Data augmentation a factor of 2048 using (i) spatial transformations
and (ii) modifications of the input intensities.

81

Dropout

• Dropout was applied in the fully connected layers

Details
● At test time average results from five different cropped and

mirrored versions of the image
● SGD with a momentum coefficient of 0.9 and batch size of 128.
● L2 (weight decay) regularizer used.
● This system achieved a 16.4% top-5 error rate and a 38.1%

top-1 error rate.

VGG (2015)

Details
● 19 hidden layers
● 144 million parameters
● 6.8% top-5 error rate, 23.7% top-1 error rate

ImageNet History

86

Convolution #2
● 2D Convolution
● Downsampling and upsampling, 1x1 convolution
● Image classification
● Object detection
● Semantic segmentation
● Residual networks
● U-Nets and hourglass networks

You Only Look Once (YOLO)
● Network similar to VGG (448x448 input)
● 7×7 grid of locations
● Predict class at each location
● Predict 2 bounding boxes at each location

○ Five parameters –x,y, height, width, and confidence
● Momentum, weight decay, dropout, and

data augmentation
● Heuristic at the end to threshold and decide final boxes –

(non maximum suppression)

Object detection (YOLO)

Transfer learning

Transfer learning from ImageNet classification

Results

Convolution #2
● 2D Convolution
● Downsampling and upsampling, 1x1 convolution
● Image classification
● Object detection
● Semantic segmentation
● Residual networks
● U-Nets and hourglass networks

Semantic Segmentation (2015)

Encoder Decoder

Semantic segmentation results

https://cs231n.github.io/understanding-cnn/

AlexNet

95

1st Layer

Cat image input
(not actual image)

5th Layer
A

ct
iv

at
io

n
s

(f
ea

tu
re

 m
ap

s)
Fi

lt
er

 K
er

n
el

s

…

…

2nd Layer

https://cs231n.github.io/understanding-cnn/

https://poloclub.github.io/cnn-explainer/

96

https://poloclub.github.io/cnn-explainer/

Other Approaches

After midterm:

● Recurrent neural networks
○ Repeatedly run same network on small chunks to update persistent state.

● Attention / Transformers
○ Run same network on small chunks of input, combined all of them via weighted averages…
○ Originally designed for text, but also state of the art for some vision problems now

My favorite, but not a topic for this course

● Neural fields
○ Big network re-parameterizing inputs as functions with small inputs and outputs

Feedback?

